
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell

doi: 10.1039/b808859d
pmid: 18846297
We report the fabrication and characterisation of a non-compartmentalised, mediator and cofactor free glucose-oxygen biofuel cell based on adsorbed enzymes exhibiting direct bioelectrocatalysis, viz. cellobiose dehydrogenase from Dichomera saubinetii and laccase from Trametes hirsuta as the anodic and cathodic bioelements, respectively, with the following characteristics: an open-circuit voltage of 0.73 V; a maximum power density of 5 microW cm(-2) at 0.5 V of the cell voltage and an estimated half-life of > 38 h in air-saturated 0.1 M citrate-phosphate buffer, pH 4.5 containing 5 mM glucose.
- Malmö University Sweden
- Department of Biological Sciences Russian Federation
- University of Natural Resources and Life Sciences Austria
- Russian Academy of Sciences Russian Federation
- Lund University Sweden
Bioelectric Energy Sources, Laccase, Catalysis, Electron Transport, Oxygen, Glucose, Ascomycota, Carbohydrate Dehydrogenases, Polyporales, Electrodes, Half-Life
Bioelectric Energy Sources, Laccase, Catalysis, Electron Transport, Oxygen, Glucose, Ascomycota, Carbohydrate Dehydrogenases, Polyporales, Electrodes, Half-Life
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).116 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
