
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase

doi: 10.1039/b918879g
The effect of the ionic liquid 1-butyl-3-methylimidazolium chloride ([bmim]Cl) and of high pressure on the activity of cellulase from Aspergillus niger were studied separately and in combination. The enzyme activity decreased with increasing concentrations of [bmim]Cl, reaching 50% the value in aqueous buffer with 20% [bmim]Cl. However, when the enzyme is held in 10% [bmim]Cl and is then assayed in 1% [bmim]Cl, it showed only 8% reduction of activity. These results can be explained by the fact that the activity of the enzyme in [bmim]Cl is linearly correlated with the decrease of the thermodynamic water activity (aw). Under pressure the enzyme activity varied from less 60% (at 200MPa) to equal (at 400 MPa), compared to atmospheric pressure. In 10% [bmim]Cl under pressure, cellulase activity is improved compared to atmospheric pressure, varying from equal (at 600 MPa) to 1.7-fold higher (at 100 MPa). This opens the possibility to improve cellulase activity in ionic liquids, and possibly of other enzymes, by carrying out the reaction under pressure.
- Universidade de Aveiro Portugal
- "UNIVERSIDADE DE AVEIRO Portugal
- University of Aveiro Portugal
- University of Aveiro Portugal
- UNIVERSIDADE DE AVEIRO Portugal
High pressure, Ionic Liquids, Bioethanol, BminCl, Cellulose
High pressure, Ionic Liquids, Bioethanol, BminCl, Cellulose
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).80 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
