
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
High oxygen-reduction activity and durability of nitrogen-doped graphene

Authors: Yougui Chen; Shanna Knights; Siyu Ye; Ruying Li; Ying Chen; Dongsheng Geng; Xueliang Sun; +1 Authors
Yougui Chen; Shanna Knights; Siyu Ye; Ruying Li; Ying Chen; Dongsheng Geng; Xueliang Sun; Yongliang Li;
doi: 10.1039/c0ee00326c
Abstract
Nitrogen-doped graphene as a metal-free catalyst for oxygen reduction was synthesized by heat-treatment of graphene using ammonia. It was found that the optimum temperature was 900 °C. The resulting catalyst had a very high oxygen reduction reaction (ORR) activity through a four-electron transfer process in oxygen-saturated 0.1 M KOH. Most importantly, the electrocatalytic activity and durability of this material are comparable or better than the commercial Pt/C (loading: 4.85 µgPt cm−2). XPS characterization of these catalysts was tested to identify the active N species for ORR.
Related Organizations
- Ballard Power Systems (Germany) Germany
- Ballard Power Systems (Germany) Germany
- Western University Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
1K
Top 0.1%
Top 0.1%
Top 0.1%
Beta
Fields of Science (4) View all
Fields of Science
Related to Research communities
Energy Research