
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities

doi: 10.1039/c1ee01599k
Aiming at designing ionic liquids for the purification of natural gas, the solubility of methane in ionic liquids is investigated here through the measurement of the solubilities of methane in four ionic liquids (ILs), in a wide range of molar fractions, temperature and pressures. With the exception of the phosphonium-based IL, which behaves as an almost ideal solution, the other ionic liquids show strong positive deviations from ideality, resulting from non-favorable interactions between CH4 and the ILs. The results indicate that the non-ideality of the solution increases, and the solubility decreases, with the polarity of the ionic liquid. The effect of the ionic liquid polarity on the CO2/CH4 and H2S/CH4 selectivities is evaluated here. The ionic liquids studied here present the largest CO2/CH4 and H2S/CH4 selectivities ever reported. The selectivity models previously proposed in the literature are tested against these new experimental data and are shown to fail. Furthermore, it is shown that describing the ILs' polarity using the Kamlet–Taft parameters, the CO2/CH4 and H2S/CH4 selectivities correlate well with the β-parameter providing a key to the design of ionic liquids with enhanced selectivities.
- University of Aveiro Portugal
- University of Aveiro Portugal
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).101 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
