
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Design and development of catalysts for Biomass-To-Liquid-Fischer–Tropsch (BTL-FT) processes for biofuels production

Authors: Antonio A. Romero; Juan M. Campelo; José Luis Valverde; Rafael Luque; Ana Raquel de la Osa; Paula Sánchez;
doi: 10.1039/c1ee02238e
Abstract
BTL-FT processes for hydrocarbon production from syngas obtained from biomass gasification are becoming increasingly trendy as suitable alternatives to produce various high quality fuels for different applications. Many investigations are ongoing to test the suitability of biomass syngas for FTS using the traditionally employed catalysts. The choice of catalysts for these processes is normally restricted to Fe and Co-based materials as they provide the best compromise between performance and price. In this perspective, we aim to provide a comparative overview of the performance between Fe and Co-based high performance FTS catalysts for hydrocarbon production via BTL-FTS processes.
Related Organizations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).140 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
140
Top 1%
Top 10%
Top 1%
Beta
Fields of Science (4) View all
Fields of Science
Related to Research communities
Energy Research