
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique

doi: 10.1039/c2cp23402e
pmid: 22234416
Urine pretreatment has attracted increasing interest as it is able to relieve the nitrogen and phosphorus overloading problems in municipal wastewater treatment plants. In this study, an integrated process, which combines magnesium ammonium phosphate (MAP) precipitation with a microbial fuel cell (MFC), is proposed for the recovery of a slow-release fertilizer and electricity from urine. In such a two-step process, both nitrogen and phosphorus are recovered through the MAP process, and organic matters in the urine are converted into electricity in the MFCs. With this integrated process, when the phosphorus recovery is maximized without a dose of PO(4)(3-)-P in the MAP precipitation process, removal efficiencies for PO(4)(3)-P and NH(4)(+)-N of 94.6% and 28.6%, respectively, were achieved with a chemical oxygen demand (COD) of 64.9% accompanied by a power output of 2.6 W m(-3). Whereas removal efficiencies for PO(4)(3)-P and NH(4)(+)-N of 42.6% and 40%, respectively, and a COD of 62.4% and power density of 0.9 W m(-3) were obtained if simultaneous recovery of phosphorus and nitrogen was required through dosing with 620 mg L(-1) of PO(4)(3-)-P in the MAP process. This work provides a new sustainable approach for the efficient and cost-effective treatment of urine with the recovery of energy and resources.
- University of Science and Technology of China China (People's Republic of)
Biological Oxygen Demand Analysis, Bacteria, Bioelectric Energy Sources, Nitrogen, Struvite, Magnesium Compounds, Phosphorus, Waste Disposal, Fluid, Phosphates, Electricity, Humans
Biological Oxygen Demand Analysis, Bacteria, Bioelectric Energy Sources, Nitrogen, Struvite, Magnesium Compounds, Phosphorus, Waste Disposal, Fluid, Phosphates, Electricity, Humans
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).94 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
