
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improvement in the efficiency of an OrganoMetallic Fuel Cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support

doi: 10.1039/c2ee22055e
handle: 20.500.14243/241912 , 11577/2572776
The electrooxidation of ethanol to acetate is achieved with Rh(I) diolefin amine complexes of the general formula [Rh(Y)(trop2NH)(L)] (L = PPh3, P(4-n-BuPh)3; Y = triflate, acetate; Bu = butyl) in direct alcohol fuel cells that have the peculiarity of containing a molecular anode electrocatalyst and, hence, are denoted as OrganoMetallic Fuel Cells (OMFCs). Changing the carbon black support from Vulcan XC-72 (Cv) to Ketjenblack EC 600JD (Ck) and/or the axial phosphane to produce non crystalline complexes has been found to remarkably change the electrochemical properties of the organorhodium catalysts, especially in terms of specific activity and durability. An in-depth study has shown that either Ck or P(4-n-butylPh)3 favour the formation of an amorphous Rh-acetato phase on the electrode, leading to a much more efficient and recyclable catalyst as compared to a crystalline Rh-acetate complex which is formed on Cv with PPh3 as the ligand. The ameliorating effect of the amorphous phase has been ascribed to its higher number of surface complex molecules as compared to the crystalline phase. A specific activity as high as 10 000 A gRh-1 has been found in a half cell, which is the highest value ever reported for ethanol electrooxidation.
Rh(I) diolefin amine complexes, electrooxidation, ethanol
Rh(I) diolefin amine complexes, electrooxidation, ethanol
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
