
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
“In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis

doi: 10.1039/c2ee23668k
The search for affordable high performance electrode materials in photoelectrochemical hydrogen production by solar water splitting is an ongoing quest. Hematite is a photoanode material with an electronic band gap suitable for efficient absorption of visible light in a photoelectrochemical cell (PEC). Although its poor electronic structure makes hematite a controversial candidate for PEC, it remains promising because it is an earth abundant, chemically stable and low cost material – necessary prerequisites for PEC to become a competitive cost-efficient solar fuel economy. In addition to reviewing some recent PEC research on hematite and its relevant physical and chemical characteristics, we show how hematite obtained by a low cost synthesis can be refined by hydrothermal treatment and further functionalized by coating with phycocyanin, a light harvesting protein known for photosynthesis in blue-green algae.
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
- University of Basel Switzerland
- Swiss Federal Laboratories for Materials Science and Technology Switzerland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).206 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
