
Found an issue? Give us feedback
ChemInform
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Microwave-assisted, sequential four-component synthesis of polysubstituted 5,6-dihydroquinazolinones from acyclic precursors and a mild, halogenation-initiated method for their aromatization under focused microwave irradiation

Authors: Damiano Rocchi; J. Francisco González; J. Carlos Menéndez;
Abstract
A one-pot, microwave-assisted protocol has been developed for the synthesis of 5,6-dihydroquinazolinones that incorporate structural fragments from chalcones, acetylacetoacetate, ammonium formate and formamide. This process generates two rings, two carbon–carbon and three carbon–nitrogen bonds and does not require the use of chromatographic purification. The dihydroquinazolinones were efficiently aromatized without the need for metal-based oxidants by a microwave-assisted halogenation–elimination sequence in the presence of N-bromosuccinimide, again in the absence of chromatographic purification.
Related Organizations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
31
Top 10%
Top 10%
Top 10%
Fields of Science (5) View all
Fields of Science
Related to Research communities
Energy Research