Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KITopen (Karlsruhe I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2013
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy & Environmental Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Precipitation in aqueous lithium–oxygen batteries: a model-based analysis

Authors: Timo Danner; Timo Danner; Birger Horstmann; Birger Horstmann; Wolfgang G. Bessler; Wolfgang G. Bessler;

Precipitation in aqueous lithium–oxygen batteries: a model-based analysis

Abstract

In this paper we present a model of the discharge of a lithium–oxygen battery with aqueous electrolyte. Lithium–oxygen batteries (Li–O2) have recently received great attention due to their large theoretical specific energy. Advantages of the aqueous design include the stability of the electrolyte, the long experience with gas diffusion electrodes (GDEs), and the solubility of the reaction product lithium hydroxide. However, competitive specific energies can only be obtained if the product is allowed to precipitate. Here we present a dynamic one-dimensional model of a Li–O2 battery including a GDE and precipitation of lithium hydroxide. The model is parameterized using experimental data from the literature. We demonstrate that GDEs remove power limitations due to slow oxygen transport in solutions and that lithium hydroxide tends to precipitate on the anode side. We discuss the system architecture to engineer where nucleation and growth predominantly occurs and to optimize for discharge capacity.

Country
Germany
Keywords

info:eu-repo/classification/ddc/660, 660, ddc:660, Lithiumbatterie, modeling, precipitation, 540, 620, Chemical engineering, aqueous lithium-air battery

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research