
Found an issue? Give us feedback
Energy & Environmental Science
Article . 2018 . Peer-reviewed
License: Royal Society of Chemistry Licence to Publish
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors

Tao Liu; Zhenghui Luo; Qunping Fan; Guangye Zhang; Lin Zhang; Wei Gao; Xia Guo; Wei Ma; Maojie Zhang; Chuluo Yang; Yongfang Li; He Yan;
doi: 10.1039/c8ee01700j
Abstract
Ternary OSCs fabricated with two acceptors with similar absorption spectra achieved the best PCE of 14.13% with an impressive FF of 78.2%.
Country
China (People's Republic of)
Related Organizations
- Wuhan University China (People's Republic of)
- Soochow University China (People's Republic of)
- Soochow University Taiwan
- Soochow University Taiwan
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
Keywords
500
500
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).260 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
260
Top 1%
Top 1%
Top 0.1%
Beta
Fields of Science
Fields of Science
Related to Research communities
Energy Research