Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Photochemical & Phot...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Photochemical & Photobiological Sciences
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2019
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Photochemical & Photobiological Sciences
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar UV radiation in a changing world: roles of cryosphere—land—water—atmosphere interfaces in global biogeochemical cycles

Authors: Sulzberger, B.; Austin, A.T.; Cory, R.M.; Zepp, R.G.; Paul, N.D.;

Solar UV radiation in a changing world: roles of cryosphere—land—water—atmosphere interfaces in global biogeochemical cycles

Abstract

Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO2) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO2, including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes.

Countries
United Kingdom, Argentina, Argentina
Keywords

Greenhouse Effect, 550, Climate Change, Oceans and Seas, CLIMATE CHANGE, Fresh Water, Global Warming, 333, Greenhouse Gases, https://purl.org/becyt/ford/1.5, Natural Resources, Solar Energy, Animals, Ice Cover, Ozone Depletion, https://purl.org/becyt/ford/1, Ecosystem, BIOGEOCHEMICAL CYCLES, Photolysis, Stratospheric Ozone, Arctic Regions, Atmosphere, Carbon Dioxide, Carbon, Droughts, UV RADIATION, SOLAR RADIATION, Environmental Pollutants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 1%
Top 10%
Top 1%
Green
hybrid