
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of climate change on the resilience of the UK power system
doi: 10.1049/cp.2015.0878
The increasing effects of climate change and extreme weather events on the operation of power systems highlight the need for developing effective techniques and models for evaluating the challenges that power systems may have to deal with in the future for maintaining high levels of resilience. Within this context, the aim of the `Resilient Electricity Networks for Great Britain (RESNET)' project is to develop and demonstrate a comprehensive approach to analyse the effects of climate-related changes on the resilience of the Great Britain's electricity system, and to develop tools for quantifying the value of adaptation measures that would enhance its resilience. This paper presents an overview of the key research activities and findings of RESNET project, specifically addressing possible climate change implications related to demand and supply scenarios, component ratings, and impact of extreme weather on system reliability. The final aim is to provide insights on various climate and weather-related challenges that the Great Britain's electricity system might face in the future.
- Newcastle University United Kingdom
- University of Salford United Kingdom
Power systems, Resilience, Resiliency, Climate change, Extreme weather events
Power systems, Resilience, Resiliency, Climate change, Extreme weather events
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
