Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Energy Systems I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Energy Systems Integration
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Energy Systems Integration
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Power system coherency recognition and islanding: Practical limits and future perspectives

Authors: Harold R. Chamorro; Edgar O. Gomez‐Diaz; Mario R. A. Paternina; Manuel A. Andrade; Emilio Barocio; Jose L. Rueda; Francisco Gonzalez‐Longatt; +1 Authors

Power system coherency recognition and islanding: Practical limits and future perspectives

Abstract

AbstractElectrical power systems are continuously upgrading into networks with a higher degree of automation capable of identifying and reacting to different events that may trigger undesirable situations. In power systems with decreasing inertia and damping levels, poorly damped oscillations with sustained or growing amplitudes following a disturbance may eventually lead to instability and provoke a major event such as a blackout. Additionally, with the increasing and considerable share of renewable power generation, unprecedented operational challenges shall be considered when proposing protection schemes against unstable electro‐mechanical (e.g. ringdown) oscillations. In an emergency situation, islanding operations enable splitting a power network into separate smaller networks to prevent a total blackout. Due to such changes, identifying the underlying types of oscillatory coherency and the islanding protocols are necessary for a continuously updating process to be incorporated into the existing power system monitoring and control tasks. This paper examines the existing evaluation methods and the islanding protocols as well as proposes an updated operational guideline based on the latest data‐analytic technologies.

Keywords

TK1001-1841, damping, power engineering computing, power distribution control, data analysis, Energy industries. Energy policy. Fuel trade, Production of electric energy or power. Powerplants. Central stations, distributed power generation, power distribution faults, HD9502-9502.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
gold