
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Short‐term reliability evaluation of integrated electricity and gas systems considering dynamics of gas flow

doi: 10.1049/gtd2.12222
Short‐term reliability evaluation of integrated electricity and gas systems considering dynamics of gas flow
AbstractWith the adoption of gas‐fired units (GFU), the interaction between the electricity and gas systems has been intensified. The failure of the gas sources may lead to the insufficiency of the gas supply to the GFUs, and further result in the electricity supply shortage, threatening reliabilities of electricity and gas systems. However, compared with the electric power flow, the dynamics of the gas flow are much slower. Most of the existing studies evaluated the reliabilities of integrated electricity and gas systems (IEGS) without considering the slower dynamics of gas flow, which are not fully accurate in the short‐term. This paper proposes a short‐term reliability evaluation technique for IEGS considering the gas flow dynamics. Firstly, the short‐term reliability models of gas sources, GFUs, and gas compressors are developed. Then, the multi‐stage contingency management scheme is proposed, where gas flow dynamics are analysed for determining the time‐varying load curtailments of electricity and gas. Moreover, a time‐sequential Monte Carlo simulation technique is developed with the finite‐difference scheme to tackle the gas flow dynamics during the short‐term reliability evaluation. Finally, the proposed reliability evaluation technique is validated using an integrated IEEE reliability test system and the practical Belgium gas transmission system.
- Zhejiang Ocean University China (People's Republic of)
- Nanyang Technological University Singapore
- Taiyuan University of Technology China (People's Republic of)
- Taiyuan University of Technology China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
TK1001-1841, Distribution or transmission of electric power, Differential equations (numerical analysis), Monte Carlo methods, Power system management, operation and economics, TK3001-3521, Reliability, Production of electric energy or power. Powerplants. Central stations
TK1001-1841, Distribution or transmission of electric power, Differential equations (numerical analysis), Monte Carlo methods, Power system management, operation and economics, TK3001-3521, Reliability, Production of electric energy or power. Powerplants. Central stations
1 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
