Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Generation, Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Generation, Transmission & Distribution
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated renewable–conventional generation expansion planning using multiobjective framework

Authors: Taher Niknam; Mohammad-Amin Akbari; Mohsen Gitizadeh; Alireza Roosta; Jamshid Aghaei;

Integrated renewable–conventional generation expansion planning using multiobjective framework

Abstract

This study presents multiperiod multiobjective generation expansion planning (MMGEP) model of power electric system including renewable energy sources (RES). The model optimises simultaneously multiple objectives (i.e. minimisation of total costs, emissions, energy consumption and portfolio investment risk as well as maximisation of system reliability). The mixed-integer linear programming (MILP) is used for the proposed optimisation and an efficient linearisation technique is proposed to convert the non-linear reliability metrics into a set of linear expressions. The proposed solution for multiobjective mathematical programming (MMP) framework includes a hybrid augmented-weighted epsilon constraint and lexicographic optimisation approach to obtain the Pareto optimal or efficient solutions for the MMGEP problem. Finally, fuzzy decision making is implemented to select the most preferred solution among Pareto solutions based on the goals of decision makers (DMs). A synthetic test system including seven types of candidate units is considered here for GEP in a 6-year planning horizon. The effectiveness of the proposed modifications is illustrated in detail.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback