Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal multi‐configuration and allocation of SVR, capacitor, centralised wind farm, and energy storage system: a multi‐objective approach in a real distribution network

Authors: Mohamed Elsayed Lotfy; Tomonobu Senjyu; Mir Sayed Shah Danish; Atsushi Yona; Mikaeel Ahmadi; Shigenobu Ryuto;

Optimal multi‐configuration and allocation of SVR, capacitor, centralised wind farm, and energy storage system: a multi‐objective approach in a real distribution network

Abstract

Extension of renewable energies in power system planning and operation especially distribution networks is not limited to power sustainability. It also encompasses many significant contributions such as eliminating electricity shortages by diversifying energy supply, improving reliability with power quality, reducing greenhouse gas emissions, and providing energy independence, which is the most crucial aspect for both developed and developing countries power sector. The extraction of such benefits in the best manner can be achieved by considering storage and control devices, aiding well‐configured electricity networks through competitive optimisation techniques. By taking such points into consideration, optimal multi‐configuration and allocation of step‐voltage regulators (SVRs), capacitor banks, and energy storage system along with centralised wind‐power generation integrating to distribution network are investigated and applied, using a novel and Pareto based epsilon multi‐objective genetic algorithm. The proposed methodology is applied to an extensive and real 162‐bus distribution network in Kabul city to validate its sturdiness. The simulations are performed in MATLAB® environment with six configuration scenarios to compare the effect of multiple arrangements in the distribution network, and to discover the best configuration fulfilling the optimisation criteria with the objective functions being as power loss, voltage deviation, and violation cost.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
gold