Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralised OPF of large multiarea power systems

Authors: Pandelis N. Biskas; Anastasios G. Bakirtzis;

Decentralised OPF of large multiarea power systems

Abstract

The paper presents a method for the decentralised solution of the optimal-power-flow (OPF) problem of large, interconnected power systems. The method decomposes the central OPF problem of a multiarea system into independent OPF subproblems, one for each area. The mathematical decomposition method is based on the decoupling of the first-order (KKT) conditions of the original system-wide OPF problem. The solutions of the OPF subproblems of the different areas are co-ordinated through a pricing mechanism until they converge to the system-wide OPF solution. The method requires no parameter tuning for reaching convergence or faster convergence. Results from the application of the method to several IEEE test systems are presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Average