
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Air pressure forecasting for the Mutriku oscillating‐water‐column wave power plant: Review and case study

doi: 10.1049/rpg2.12289
handle: 1721.1/139650
AbstractThe high variability and unpredictability of renewable energy resources require optimization of the energy extraction, by operating at the best efficiency point, which can be achieved through optimal control strategies. In particular, wave forecasting models can be valuable for control strategies in wave energy converter devices. This work intends to exploit the short‐term wave forecasting potential on an oscillating water column equipped with the innovative biradial turbine. A Least Squares Support Vector Machine (LS‐SVM) algorithm was developed to predict the air chamber pressure and compare it to the real signal. Regressive linear algorithms were executed for reference. The experimental data was obtained at the Mutriku wave power plant in the Basque Country, Spain. Results have shown LS‐SVM prediction errors varying from 9% to 25%, for horizons ranging from 1 to 3 s in the future. There is no need for extensive training data sets for which computational effort is higher. However, best results were obtained for models with a relatively small number of LS‐SVM features. Regressive models have shown slightly better performance (8–22%) at a significantly lower computational cost. Ultimately, these research findings may play an essential role in model predictive control strategies for the wave power plant.
- Instituto Superior de Espinho Portugal
- Massachusetts Institute of Technology United States
690, Optimisation techniques, TJ807-830, Control of electric power systems, Reliability, Renewable energy sources, Probability theory, stochastic processes, and statistics, Velocity, acceleration and rotation control, Wave power
690, Optimisation techniques, TJ807-830, Control of electric power systems, Reliability, Renewable energy sources, Probability theory, stochastic processes, and statistics, Velocity, acceleration and rotation control, Wave power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
