Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Air pressure forecasting for the Mutriku oscillating‐water‐column wave power plant: Review and case study

Authors: João C.C. Henriques; Susana M. Vieira; Duarte Valério; Paul D. Sclavounos; Jorge Marques Silva; Jorge Marques Silva;

Air pressure forecasting for the Mutriku oscillating‐water‐column wave power plant: Review and case study

Abstract

AbstractThe high variability and unpredictability of renewable energy resources require optimization of the energy extraction, by operating at the best efficiency point, which can be achieved through optimal control strategies. In particular, wave forecasting models can be valuable for control strategies in wave energy converter devices. This work intends to exploit the short‐term wave forecasting potential on an oscillating water column equipped with the innovative biradial turbine. A Least Squares Support Vector Machine (LS‐SVM) algorithm was developed to predict the air chamber pressure and compare it to the real signal. Regressive linear algorithms were executed for reference. The experimental data was obtained at the Mutriku wave power plant in the Basque Country, Spain. Results have shown LS‐SVM prediction errors varying from 9% to 25%, for horizons ranging from 1 to 3 s in the future. There is no need for extensive training data sets for which computational effort is higher. However, best results were obtained for models with a relatively small number of LS‐SVM features. Regressive models have shown slightly better performance (8–22%) at a significantly lower computational cost. Ultimately, these research findings may play an essential role in model predictive control strategies for the wave power plant.

Country
United States
Keywords

690, Optimisation techniques, TJ807-830, Control of electric power systems, Reliability, Renewable energy sources, Probability theory, stochastic processes, and statistics, Velocity, acceleration and rotation control, Wave power

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold