
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Grid‐forming control for inverter‐based resources in power systems: A review on its operation, system stability, and prospective

doi: 10.1049/rpg2.12991
AbstractThe increasing integration of inverter based resources (IBR) in the power system has a significant multi‐faceted impact on the power system operation and stability. Various control approaches are proposed for IBRs, broadly categorized into grid‐following and grid‐forming (GFM) control strategies. While the GFL has been in operation for some time, the relatively new GFMs are rarely deployed in the IBRs. This article aims to provide an understanding of the working principles and distinguish between these two control strategies. A survey of the recent GFM control approaches is also delivered here, expanding the existing classification. It also explores the role of GFM control and its types in power system dynamics and stability like voltage, frequency etc. Practical insight into these stabilities is provided using case studies, making this review article unique in its comprehensive approach. Lacking elsewhere, the GFMs' real‐world demonstrations and their applications in several IBRs like wind farms, photovoltaic power generation stations etc., are also analyzed. Finally, the research gaps are identified, and the prospect of GFM is presented based on the system needs, informed by GFM real‐world projects. This work is a potential road map for the GFM large‐scale deployment in the decarbonized IBR‐based bulk power system.
- Tsinghua University China (People's Republic of)
- University of Technology Sydney Australia
- Cardiff University United Kingdom
- Cardiff University United Kingdom
- University of Technology Sydney Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
