Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Smart Gridarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Smart Grid
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Smart Grid
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data‐driven detection and identification of IoT‐enabled load‐altering attacks in power grids

Authors: Subhash Lakshminarayana; Saurav Sthapit; Hamidreza Jahangir; Carsten Maple; H. Vincent Poor;

Data‐driven detection and identification of IoT‐enabled load‐altering attacks in power grids

Abstract

AbstractAdvances in edge computing are powering the development and deployment of Internet of Things (IoT) systems to provide advanced services and resource efficiency. However, large‐scale IoT‐based load‐altering attacks (LAAs) can seriously impact power grid operations, such as destabilising the grid's control loops. Timely detection and identification of any compromised nodes are essential to minimise the adverse effects of these attacks on power grid operations. In this work, two data‐driven algorithms are proposed to detect and identify compromised nodes and the attack parameters of the LAAs. The first method, based on the Sparse Identification of Nonlinear Dynamics approach, adopts a sparse regression framework to identify attack parameters that best describe the observed dynamics. The second method, based on physics‐informed neural networks, employs neural networks to infer the attack parameters from the measurements. Both algorithms are presented utilising edge computing for deployment over decentralised architectures. Extensive simulations are performed on IEEE 6‐, 14‐, and 39‐bus systems to verify the effectiveness of the proposed methods. Numerical results confirm that the proposed algorithms outperform existing approaches, such as those based on unscented Kalman filter, support vector machines, and neural networks (NN), and effectively detect and identify locations of attack in a timely manner.

Related Organizations
Keywords

TK, Electrical engineering. Electronics. Nuclear engineering, TJ, TK1-9971, QA76

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
gold