
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improving energy efficiency through the use of waste heat products in the production of building materials

Concern for the sustainable management and recycling of solid waste is becoming more visible in all sectors of the economy. This study explores the possibility of using coal ash residue (waste from Kazan CHPP-2) as a substitute for fine-grained aggregate in sulfur concrete. The trend towards an increase in the level of utilization of waste heat power engineering is an important task. The chemical composition, microstructure and mechanical properties, including density, water absorption, compressive strength and thermal conductivity of sulfur concrete, including coal ash with partial and complete sand replacement, were investigated and the results were compared with those for standard cellular concrete. The authors studied modern heat-insulating materials and materials from industrial waste products. The article analyzes the estimated thickness of the insulating material depending on the type of structure. Outside walls made of sulfur concrete, in addition to high strength properties, have high thermal and economic performance.
Environmental sciences, GE1-350
Environmental sciences, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
