
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Algorithms of hierarchical mixture of opinions of experts in problems of synthesis of information management systems city development

In the present article we will consider a class of associative machines with dynamic structure where the entrance signal exerts direct impact on the mechanism of association of output signals of experts. At the same time we are interested in such group of expert decisions at which separate expert responses unite not linearly through hierarchically organized lock networks. Hierarchical mixture of opinions of experts, along with simple mixture are examples of modular networks: neural network of a module if the calculations executed by it can be distributed on several subsystems processing different entrance signals and not crossed in the work. Output signals of these subsystems unite the integrative module which exit does not possess feedback with subsystems. In fact, the integrative module makes the decision as output signals of subsystems are grouped in the general output signal of system, and identifies what examples are samples for training of concrete modules. The most general definition of modular neural network: any set of algorithms of data processing, including algorithms of the artificial neural networks grouped for the solution of some uniform task. Automatically determine the class of associative machines with dynamic structure where the entrance signal exerts direct impact on the mechanism of association of output signals of experts, at the same time group of expert decisions at which separate expert responses unite not linearly through hierarchically organized lock networks is considered.
- Lomonosov Moscow State University Russian Federation
- Moscow State University of Technologies and Management named after K.G. Razumovskiy Russian Federation
- University of Technology and Management India
- Moscow State University of Civil Engineering Russian Federation
- Moscow State University of Civil Engineering Russian Federation
TA1-2040, Engineering (General). Civil engineering (General)
TA1-2040, Engineering (General). Civil engineering (General)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
