Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MATEC Web of Confere...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of wind-solar hybrid microgrids using swarm intelligence algorithms

Authors: Mittal Aman; Karuna G.;

Optimization of wind-solar hybrid microgrids using swarm intelligence algorithms

Abstract

The study explores the enhancement of wind-solar hybrid microgrids via the use of Swarm Intelligence Algorithms (SIAs). It assesses the efficacy of these algorithms in efficiently managing renewable energy sources, load demands, and battery storage inside the microgrid system. An examination of actual data highlights the influence of environmental elements on the production of electricity, as seen by the diverse wind speeds resulting in power outputs that range from 15 kW at 4 m/s to 30 kW at 7 m/s. This underscores the clear and direct relationship between wind speed and the amount of power created. Likewise, solar irradiance levels demonstrate oscillations ranging from 500 W/m² to 800 W/m², therefore yielding power outputs that include a range of 15 kW to 24 kW, so illuminating the profound impact of solar irradiance on energy capture. The dynamic energy consumption patterns are exposed by the varying load demands, whereby the demand levels oscillate between 20 kW and 28 kW. This highlights the crucial significance of demand variability in determining energy needs. In addition, the data on battery storage reveals a range of charge levels, ranging from 25 kWh to 40 kWh, which underscores its pivotal function in the equilibrium of energy supply and consumption. When evaluating SIAs, it becomes evident that Particle Swarm Optimization (PSO) surpasses both Ant Colony Optimization (ACO) and Genetic Algorithms (GA) in obtaining an impressive 80% renewable energy penetration rate. PSO effectively reduces operating costs by 15%, demonstrating its exceptional proficiency in optimizing microgrid operations. This study provides valuable insights into the intricate interplay among environmental conditions, load demands, battery storage, and algorithmic optimization in wind-solar hybrid microgrids.

Keywords

energy management strategies, Engineering (General). Civil engineering (General), wind-solar hybrid microgrids, microgrid operations, swarm intelligence algorithms, TA1-2040, renewable energy optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold