Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Enriched Radial Point Interpolation Method (e-RPIM) for the Analysis of Crack Tip

Authors: Y. T. Gu; W. L. Wang; Q. Fu; Jane W. Z. Lu; Andrew Y. T. Leung; Vai Pan Iu; Kai Meng Mok;

An Enriched Radial Point Interpolation Method (e-RPIM) for the Analysis of Crack Tip

Abstract

In this paper, an enriched radial point interpolation method (e‐RPIM) is developed for the determination of crack tip fields. The conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched meshfree RBF shape functions is firstly investigated using the surface fitting. The surface fitting results have proven that, comparing with the conventional RBF, the enriched RBF interpolation has: 1) a similar accuracy to fit a polynomial surface; and 2) a much better accuracy to fit a trigonometric surface then the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of conventional RBF interpolation, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF shape function and the meshfree weak‐form. Crack problems are simulated using this newly developed e‐RPIM method. It has been demonstrated that the present e‐RPIM is very accurate and stable, and it has very good potential to develop a practical simulation tool for fracture mechanics problems.

Country
Australia
Related Organizations
Keywords

Fracture Mechanics, Enriched RBF, Finite Element Analysis, Matrix Algebra, Meshfree Method, Crack Tip, Elasticity, Interpolation, RPIM, 518

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average