
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Derivation of 4 degrees of freedom nonlinear wind turbine model using effective mass and stiffness for simulation of control algorithm

doi: 10.1063/1.4826703
As concern about limited energy is gradually growing and wind energy is regarded as one of the best solutions, research on the wind turbine system has been vigorously accomplished. The commercial tools to simulate the non-linear dynamic characteristics of the wind turbine system are various, but the tools take a significant amount of time to simulate the control algorithm and require many input variables. In this paper, the procedures to simulate and examine the controller of wind turbines at the initial design stage are proposed by a 4 degrees of freedom mathematical model of wind turbine, and methodology to make the turbine model is also proposed by effective mass and stiffness defined in the modal domain. The proposed method in this paper is simpler than other methods. The simulations by the three kinds of models for the 2-MW wind turbine are accomplished to discuss the simulation results: a 2 degrees of freedom wind turbine model without considering tower and blade behavior, a 4 degrees of freedom model considering tower and blade behavior modeled by mode shape function, and a 4 degrees of freedom model by the suggested method.
- Korea Institute of Machinery and Materials Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
