
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Joule heating-assisted growth of Cu(In,Ga)Se2 solar cells

doi: 10.1063/1.4906979
handle: 20.500.14243/278742
We report on the development of an unconventional method for heating a Mo-coated substrate during the deposition of a Cu(In,Ga)Se2 (CIGS) layer by the pulsed electron deposition technique, to be used as absorber in thin film solar cells. This method is based on the application of a DC electrical power directly through the Mo back contact of the cell, converting electrical energy into heat by Joule effect. Since the current flows only on the superficial metal-coated region of the substrate, a localized heating of the surface can be achieved, thus limiting the heat losses. Due to the very efficient heat transfer to the thin Mo layer, a very little electrical power density (few W/cm2) is enough to achieve the required deposition temperature on the Mo surface, much lower compared to the traditional resistor- or lamp-based external heaters. The morphological and electrical properties of Joule-heated samples have been compared to those of CIGS films heated by a conventional external heater. As far as the structure concerns, a remarkable difference is revealed by Scanning Electron Microscopy analysis, indicating a significant enlargement of the CIGS grains size on Joule-heated samples. On the contrary, Capacitance-Voltage and Current-Voltage measurements evidence similar electrical features: both types of heated samples have a net free carrier concentration ≈5 × 1015 cm−3, resulting in a similar photovoltaic conversion efficiency (≈15%). The main recombination path, deduced from the dependence of VOC on the temperature, results to be the Shockley-Read-Hall mechanism in both types of the absorber layer. These results indicate that the Joule effect could be adopted as a feasible, low cost alternative heating method for growing high quality CIGS layers.
Molybdenum, Solar cells, Pulsed Electron Deposition, Thin film growth, Sputter deposition
Molybdenum, Solar cells, Pulsed Electron Deposition, Thin film growth, Sputter deposition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
