Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection

Authors: Mahammad A. Hannan; Aini Hussain; M. S. Hossain Lipu; M. S. Hossain Lipu; Mohamad Hanif Md Saad;

Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection

Abstract

The state of charge (SOC) is the residual capacity of a battery, which indicates the available charge left inside a battery to drive a vehicle. Accurate SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner state of a battery cell, which cannot be directly measured. This paper presents an improved SOC estimation strategy for a lithium-ion battery using the back-propagation neural network (BPNN). Two algorithms, principal component analysis (PCA) and particle swarm optimization (PSO), are used to enhance the accuracy and robustness. PCA is utilized to select the most significant input features. The PSO algorithm is developed to determine the optimal value of hidden layer neurons and the learning rate since these parameters are the most critical factors in constructing an optimal BPNN model. The proposed model is tested and evaluated by using three electric vehicle drive cycles. The performance of the proposed model is compared with common BPNN and radial basis function neural network (RBFNN) models and verified based on the root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and SOC error. The validation results are very effective in predicting SOC with very narrow SOC error which demonstrates the model robustness. The results indicate that the proposed model computes RMSE to be 0.58%, 0.72%, and 0.47% for the Beijing Dynamic Stress Test (BJDST), Federal Urban Drive Schedule (FUDS), and US06, cycle, respectively.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 10%