
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Research Update: Bismuth-based perovskite-inspired photovoltaic materials

handle: 10044/1/75983
Bismuth-based compounds have recently gained interest as solar absorbers with the potential to have low toxicity, be efficient in devices, and be processable using facile methods. We review recent theoretical and experimental investigations into bismuth-based compounds, which shape our understanding of their photovoltaic potential, with particular focus on their defect-tolerance. We also review the processing methods that have been used to control the structural and optoelectronic properties of single crystals and thin films. Additionally, we discuss the key factors limiting their device performance, as well as the future steps needed to ultimately realize these new materials for commercial applications.
- Imperial College London United Kingdom
- University of Cambridge United Kingdom
Physics, QC1-999, solar energy, 540, chemical compounds, 530, materials, thin films, crystallography, TP248.13-248.65, Biotechnology
Physics, QC1-999, solar energy, 540, chemical compounds, 530, materials, thin films, crystallography, TP248.13-248.65, Biotechnology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).96 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
