Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physics of Fluidsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physics of Fluids
Article
Data sources: UnpayWall
Physics of Fluids
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling the interplay between the shear layer and leading edge suction during dynamic stall

Authors: Julien Deparday; Karen Mulleners;

Modeling the interplay between the shear layer and leading edge suction during dynamic stall

Abstract

The dynamic stall development on a pitching airfoil at Re = 106 was investigated by time-resolved surface pressure and velocity field measurements. Two stages were identified in the dynamic stall development based on the shear layer evolution. In the first stage, the flow detaches from the trailing edge and the separation point moves gradually upstream. The second stage is characterized by the roll up of the shear layer into a large scale dynamic stall vortex. The two-stage dynamic stall development was independently confirmed by global velocity field and local surface pressure measurements around the leading edge. The leading edge pressure signals were combined into a single leading edge suction parameter. We developed an improved model of the leading edge suction parameter based on thin airfoil theory that links the evolution of the leading edge suction and the shear layer growth during stall development. The shear layer development leads to a change in the effective camber and the effective angle of attack. By taking into account this twofold influence, the model accurately predicts the value and timing of the maximum leading edge suction on a pitching airfoil. The evolution of the experimentally obtained leading edge suction was further analyzed for various sinusoidal motions revealing an increase in the critical value of the leading edge suction parameter with increasing pitch unsteadiness. The characteristic dynamic stall delay decreases with increasing unsteadiness, and the dynamic stall onset is best assessed by critical values of the circulation and the shear layer height which are motion independent.

Country
Switzerland
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 1%
Top 10%
Top 1%
bronze