
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding and optimizing EBIC pn-junction characterization from modeling insights

doi: 10.1063/1.5139894
In this paper, the physical mechanisms involved in electron-beam-induced current (EBIC) imaging of semiconductor pn-junctions are reviewed to propose a model and optimize the acquisition of experimental data. Insights are drawn on the dependence of the EBIC signal with electron accelerating voltage and surface conditions. It is concluded that improvements in the resolution of EBIC are possible when the surface conditions of the specimens are carefully considered and optimized. A lower accelerating voltage and an increase of the surface recombination velocities are quantitatively shown to maximize the EBIC lateral resolution in locating the pn-junction. The effect of surface band bending is included in the model, and it is seen to primarily affect the surface recombination. Introducing controlled surface damage is shown as a potential method for resolution enhancement via focused ion beam milling with Ga+ ions. These findings contribute to the understanding of this technique and can produce further improvements to its application in semiconductor device technology.
- UNSW Sydney Australia
- University of Oxford United Kingdom
- University of Oxford United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
