Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physics of Fluidsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physics of Fluids
Article
License: CC BY
Data sources: UnpayWall
Physics of Fluids
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Turbulence characteristics in the wake of a heliostat in an atmospheric boundary layer flow

Authors: Azadeh Jafari; Matthew Emes; Benjamin Cazzolato; Farzin Ghanadi; Maziar Arjomandi;

Turbulence characteristics in the wake of a heliostat in an atmospheric boundary layer flow

Abstract

The mean and spectral characteristics of turbulence in the wake flow of a flat plate model resembling a heliostat in the atmospheric boundary layer flow are investigated in a wind tunnel experiment. Mean velocity and turbulence kinetic energy were characterized in the wake of a heliostat model at three elevation angles up to a distance of eight times the characteristic dimension of the heliostat panel. An increase in turbulence intensity and kinetic energy was found in the wake flow, reaching a peak at a distance equal to approximately twice the characteristic dimension of the heliostat panel. Furthermore, spectral and wavelet analysis of velocity fluctuations in the wake showed that the dominant mechanism in the immediate downstream of the plate was the breakdown of large inflow turbulence structures to smaller scales. In the end, the wake-induced turbulence patterns and wind loads in a heliostat field were discussed. It was found that compared to a heliostat at the front row, the heliostats positioned in high-density regions of a field were subjected to a higher turbulence intensity and, consequently, larger dynamic wind loading. The results show that it is necessary to consider the increased unsteady wind loads for the design of a heliostat in high-density regions of a field, where the gap between the rows is less than three-times the characteristic length of the heliostat panel.

Country
Australia
Keywords

flat plate model, turbulence, heliostat, 621, wake flow, 532

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
hybrid