Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aip.scitation.org/doi/...
Conference object
Data sources: UnpayWall
https://doi.org/10.1063/5.0028...
Conference object . 2020 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Conference object . 2020
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ultra-high temperature energy storage and conversion: A review of the AMADEUS project results

Authors: Datas Alejandro; López Esther; Ramos Alba; Nikolopoulos Nikolaos; Nikolopoulos Aristeidis; Zeneli Myrto; Sobczak Natalia; +13 Authors

Ultra-high temperature energy storage and conversion: A review of the AMADEUS project results

Abstract

Starting in January 2017, AMADEUS (www.amadeus-project.eu) is the first project funded by the European Commission to research on a new generation of materials and solid-state devices for ultra-high temperature energy storage and conversion. By exploring storage temperatures well beyond 1000 ºC, one of the main objectives of the project is to create new PCMs (phase change materials) with latent heat in the range of 1000-2000 kWh/m, an order of magnitude greater than that of typical salt-based PCMs used in concentrated solar power (CSP), along with developing advanced thermal insulation, PCM casing designs, and novel solid-state thermal-to-electric energy conversion devices able to operate at temperatures in the range of 1000-2000 ºC. In particular, the project is investigating silicon-boron based alloys as PCMs and hybrid thermionic-photovoltaic (TIPV) devices for energy conversion. This paper describes the main project R&D activities and the results that have been attained during the first two years of the project. This includes the thermophysical characterization of Si-B alloys, the wettability and solubility analysis of said alloys with solid refractory materials, the numerical simulation of phase-change and heat losses through thermal insulation cover, as well as the realization of the two main proof-of-concept experiments: the TIPV converter, and the full latent heat energy storage system.

Country
Italy
Keywords

energy conversion, energy storage, high-temperature, thermionic-photovoltaic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
bronze
Funded by
Related to Research communities
Energy Research