
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ultra-high temperature energy storage and conversion: A review of the AMADEUS project results

doi: 10.1063/5.0028552
handle: 20.500.14243/421623
Ultra-high temperature energy storage and conversion: A review of the AMADEUS project results
Starting in January 2017, AMADEUS (www.amadeus-project.eu) is the first project funded by the European Commission to research on a new generation of materials and solid-state devices for ultra-high temperature energy storage and conversion. By exploring storage temperatures well beyond 1000 ºC, one of the main objectives of the project is to create new PCMs (phase change materials) with latent heat in the range of 1000-2000 kWh/m, an order of magnitude greater than that of typical salt-based PCMs used in concentrated solar power (CSP), along with developing advanced thermal insulation, PCM casing designs, and novel solid-state thermal-to-electric energy conversion devices able to operate at temperatures in the range of 1000-2000 ºC. In particular, the project is investigating silicon-boron based alloys as PCMs and hybrid thermionic-photovoltaic (TIPV) devices for energy conversion. This paper describes the main project R&D activities and the results that have been attained during the first two years of the project. This includes the thermophysical characterization of Si-B alloys, the wettability and solubility analysis of said alloys with solid refractory materials, the numerical simulation of phase-change and heat losses through thermal insulation cover, as well as the realization of the two main proof-of-concept experiments: the TIPV converter, and the full latent heat energy storage system.
energy conversion, energy storage, high-temperature, thermionic-photovoltaic
energy conversion, energy storage, high-temperature, thermionic-photovoltaic
12 Research products, page 1 of 2
- 2018IsAmongTopNSimilarDocuments
- 1992IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
