Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling and control of nuclear–renewable integrated energy systems: Dynamic system model for green electricity and hydrogen production

Authors: Roshni Anna Jacob; Jie Zhang;

Modeling and control of nuclear–renewable integrated energy systems: Dynamic system model for green electricity and hydrogen production

Abstract

The need for decarbonization and diversification of energy resources has led to the development of integrated energy systems (IESs), where multiple resources supply more than one energy sector. One such IES with small modular nuclear reactors and renewables (wind and solar) as generating resources, catering to the demand of the electric grid while producing hydrogen for industries, is modeled in this paper. The physics-based component models are represented using the Modelica language and interconnected to form the IES. The control and coordination of the overall system are ensured by designing a suitable control architecture composed of individual subsystem-level controls and supervisory control. The dynamic performance and the load-following capability of the IES are evaluated, while satisfying the safe operational limits of the components. Different configurations and modes of IES operation are considered, where the adaptability of the control system in the presence of varying demands and renewable generations is validated. The simulation results indicate that hydrogen as a flexible load facilitates the supply of varying grid demand. Additionally, the renewables are also accommodated into the IES owing to the flexibility of the balance of plant associated with the nuclear reactors.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%