Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laminar flow over a rectangular cylinder experiencing torsional flutter: Dynamic response, forces and coherence modes

Authors: Qingchi Zhu; Lei Zhou; Jiahao Wen; Tingting Liu; Jize Zhang; Hui Tang; Hongfu Zhang;

Laminar flow over a rectangular cylinder experiencing torsional flutter: Dynamic response, forces and coherence modes

Abstract

This study investigates the flutter response of a rectangular cylinder model with an aspect ratio of 5 at the Reynolds number Re = 100 via direct numerical simulation. The effects of two key parameters, i.e., the moment of inertia and reduced flow velocity, on the aerodynamic performance and dynamic responses of the cylinder in the state of torsional flutter are investigated. To reveal the flutter mechanism, the high-order dynamic mode decomposition (HODMD) analysis is conducted to decompose the flow field. The results show that both an increase in the moment of inertia and a higher reduced flow velocity lead to a larger torsional amplitude and a corresponding decrease in torque. At the same time, the primary frequency decreases and the size of the shedding vortex gradually enlarges. The vortices shed from the leading edge and the trailing edge of the model form a 2P wake pattern. The leading-edge vortex is significantly larger than the trailing-edge vortex in terms of strength and size. The leading edge plays a dominant role and only contributes to the odd-order HODMD modes while the even-order modes are deemed inconsequential. As the moment of inertia increases, the total energy of the higher-order modes increases, which has the same results as the power spectral density of torque, reflecting increased nonlinearity and complexity of the system. Similarly, increasing the reduced flow velocity at the same moment of inertia has similar excitation effects.

Countries
China (People's Republic of), Hong Kong, China (People's Republic of), China (People's Republic of), China (People's Republic of), China (People's Republic of)
Keywords

530, 532, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%