Powered by OpenAIRE graph
Found an issue? Give us feedback
Physics of Fluidsarrow_drop_down
Physics of Fluids
Article . 2023 . Peer-reviewed
Data sources: Crossref
addClaim

Reducing the condensing flow effects on the steam turbine blades through modified design geometry

Authors: orcid bw Seyed Ali Hosseini;
Seyed Ali Hosseini
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Seyed Ali Hosseini in OpenAIRE
Mehdi Nakisa; orcid Esmail Lakzian;
Esmail Lakzian
ORCID
Harvested from ORCID Public Data File

Esmail Lakzian in OpenAIRE

Reducing the condensing flow effects on the steam turbine blades through modified design geometry

Abstract

Nowadays, a large part of energy is provided by steam turbines; thus, increasing the efficiency and improving the steam turbines performance are of special importance. The presence of the liquid phase in the low-pressure stage of the steam turbine can cause energy loss, efficiency drop, and erosion/corrosion problems; therefore, one of the essential issues is to identify wet steam flow and try to reduce condensation loss. In order to decrease the liquid fraction, the drainage groove technique can be applied. The drainage groove sucks the water droplets from the turbine blade surface and drains them into the condenser. In this study, the effect of the drainage groove location on the surface of steam turbine blades has been investigated on the condensation, droplet radius, inlet mass flow, erosion rate, liquid drainage ratio, condensation losses, and total drainage ratio. For modeling the condensing flow, the Eulerian–Eulerian approach has been applied. The results show that the location of the drainage groove affects the groove performance and flow pattern in the turbine blade. In the selected drainage, the liquid drainage ratio, condensation losses, and erosion rate are reduced by 7.6%, 12%, and 88%, respectively, compared with the no-drainage groove case. Also, the total drainage ratio is 7.2% in the selected drainage. The outcomes of the present work have been a major step forward in the techniques having a great influence on the lifetime, repair and maintenance, and the output power of steam power generation facilities.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?