Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ APL Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
APL Energy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
APL Energy
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bulk-like ferroelectricity and magnetoelectric response of low-temperature solution-processed BiFeO3–PbTiO3 films on Ni for metallic MEMS

Authors: Miguel Algueró; Layiq Zia; Ricardo Jiménez; Harvey Amorín; Iñigo Bretos; Adriana Barreto; G. Hassnain Jaffari; +3 Authors

Bulk-like ferroelectricity and magnetoelectric response of low-temperature solution-processed BiFeO3–PbTiO3 films on Ni for metallic MEMS

Abstract

Simple and cost-effective procedures for the direct integration of ferroelectric perovskite oxides into Ni structures are necessary to realize related multifunctional metallic microelectromechanical systems, such as dual-source energy harvesters. This is especially difficult in the case of lead-containing morphotropic phase boundary materials for high piezoelectric response because the two components are thermodynamically incompatible and the formation of NiOx or perovskite oxide reduction takes place depending on the processing conditions. We show here that low-temperature solution processing is an effective means to kinetically limit nickel oxidation, capable of providing BiFeO3–PbTiO3 films on Ni plates at only 500 °C. Bulk-like ferroelectric properties and a distinctive magnetoelectric response were attained. This perovskite system, not explored before on Ni, has a much larger switchable polarization than the widely studied Pb(Zr,Ti)O3, and it is shown here to present an excellent downscaling behavior of ferroelectric properties until the verge of the nanoscale.

Keywords

TJ807-830, Energy conservation, TJ163.26-163.5, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research