
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multimode thermoacoustic system for heating and cooling

Thermoacoustic technology emerges as a sustainable and low-carbon method for energy conversion, leveraging environmentally friendly working mediums and independence from electricity. This study presents the development of a multimode heat-driven thermoacoustic system designed to utilize medium/low-grade heat sources for room-temperature cooling and heating. We constructed both a simulation model and an experimental prototype for a single-unit direct-coupled thermoacoustic system, exploring its performance in heating-only, cooling-only, and hybrid heating and cooling modes. Internal characteristic analysis including an examination of internal exergy loss and a distribution analysis of key parameters was first conducted in the hybrid cooling and heating mode. The results indicated a positive-focused traveling-wave-dominant acoustic field within the thermoacoustic core unit, enhancing energy conversion efficiency. The output system performance was subsequently tested under different working conditions in the heating-only and cooling-only modes. A maximum output heating power of 2.3 kW and a maximum COPh of 1.41 were observed in the heating-only mode. Meanwhile, a cooling power of 748 W and a COPc of 0.4 were obtained in the typical cooling condition at 7 °C when operating in cooling-only mode. These findings underscore the promising potential of thermoacoustic systems for efficiently utilizing medium/low-grade heat sources for cooling and/or heating applications in the future.
- Karlsruhe Institute of Technology Germany
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Technical Institute of Physics and Chemistry China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
ddc:620, Engineering & allied operations, info:eu-repo/classification/ddc/620, 620
ddc:620, Engineering & allied operations, info:eu-repo/classification/ddc/620, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
