Powered by OpenAIRE graph
Found an issue? Give us feedback
Physics of Fluidsarrow_drop_down
Physics of Fluids
Article . 2024 . Peer-reviewed
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of cavitation and erosion on submersible drainage pumps: A numerical study

Authors: Md Rakibuzzaman; Hyoung-Ho Kim; Sang-Ho Suh; Md Didarul Islam; Ling Zhou;

Effects of cavitation and erosion on submersible drainage pumps: A numerical study

Abstract

Submersible drainage pumps are used around the world both residentially and industrially for draining water and sewage. However, these pumps are prone to wear and clogging when the flows inward contain particles and air bubbles, and the combined effects of cavitation and erosion directly affect the performance of such pumps and degrade their efficiency. Therefore, it is essential to design a submersible pump that mitigates the adverse effects of cavitation and erosion. Reported here is an energy-efficient submersible drainage pump for use in emergency response. The combined cavitation–erosion effects are established in order to reduce their adverse impact on the pump, and how erosion wear affects the cavitation characteristics of the water in the pump is investigated. An experiment was conducted to verify the numerical results pump, and then, the influences of particle concentration and size on two-stage existing and altered model submersible pumps were analyzed using computational fluid dynamics. The results show that the performance of the altered model pump increased by 4.34%, with the cavitation–erosion effects reduced significantly. In addition, higher particle concentration induced higher erosion rates at both the leading and trailing edges of the impeller blades. Furthermore, the altered model significantly reduced the cavitation–erosion impact on the pump impeller blades compared to the existing model.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%