
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimating the amount of water required to extinguish wildfires under different conditions and in various fuel types

doi: 10.1071/wf11022
In wildland fires where water is used as the primary extinguishing agent, one of the issues of wildfire suppression is estimating how much water is required to extinguish a certain section of the fire. In order to use easily distinguished and available indicators, the flame length and the area of the active combustion zone were chosen as suitable for the modelling of extinguishing requirements. Using Byram’s and Thomas’ equations, the heat release rate per unit length of fire front was calculated for low-intensity surface fires, fires with higher wind conditions, fires in steep terrain and high-intensity crown fires. Based on the heat release rate per unit length of fire front, the critical water flow rate was calculated for the various cases. Further, the required amount of water for a specific active combustion zone area was calculated for various fuel models. Finally, the results for low-intensity surface fires were validated against fire experiments. The calculated volumes of water can be used both during the preparatory planning for incidents as well as during firefighting operations.
- Mälardalen University College Sweden
- Mälardalen University Sweden
- University of Queensland Australia
- University of Queensland Australia
- Mälardalen University College Sweden
Ecology, 550, flame length, Forestry, Energy Engineering, fire point theory, suppression, critical water application rate, Energiteknik, Naturvetenskap, active combustion zone, Natural Sciences
Ecology, 550, flame length, Forestry, Energy Engineering, fire point theory, suppression, critical water application rate, Energiteknik, Naturvetenskap, active combustion zone, Natural Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
