Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2025
License: CC BY NC ND
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wageningen Staff Publications
Article . 2025
License: CC BY NC ND
International Journal of Wildland Fire
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A bottom–up savanna fire fuel consumption inventory and its application to savanna burning in Kafue National Park, Zambia

Authors: Eames, Tom; Kaluka, Adrian; Vernooij, Roland; Yates, Cameron; Russell-Smith, Jeremy; Van Der Werf, Guido R.;

A bottom–up savanna fire fuel consumption inventory and its application to savanna burning in Kafue National Park, Zambia

Abstract

Background Tropical savannas are the most extensively and frequently burned biome worldwide. To establish accurate emissions inventories for burning in tropical savannas, detailed biomass information is required. Available pan-tropical or global biomass maps currently focus on standing vegetation and largely ignore surface layers, a key component of fuel consumption in the tropics. Aims In this paper, we propose a methodology for building a high-resolution regional bottom–up fuel inventory, and examine the effectiveness thereof in a local scale case study in Kafue National Park, Zambia. Methods We scaled up fuel measurements using drone-mounted cameras and Sentinel-2 imagery. We examined inter-annual fire variability’s effects on emissions. Key results The fuel model performs well for surface level fuel, with an error margin of ~±27%. Accuracy is reduced when mapping more stochastic fuel layers such as coarse woody debris, or fuel layers with a structural component. Conclusions Current pyrogenic emissions models underestimate emissions from Kafue National Park. Implications Timing of burning is an important factor for total burned area as well as for emissions.

Country
Netherlands
Keywords

fuel load, remote sensing, biomass, fire management, emissions, fire, prescribed fire, savanna, burning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research