
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide

Despite long-standing interest in the origin and maintenance of species diversity, little is known about historical drivers of species assemblage structure at large spatiotemporal scales. Here, we use global species distribution data, a dated genus-level phylogeny, and paleo-reconstructions of biomes and climate to examine Cenozoic imprints on the phylogenetic structure of regional species assemblages of palms (Arecaceae), a species-rich plant family characteristic of tropical ecosystems. We find a strong imprint on phylogenetic clustering due to geographic isolation and in situ diversification, especially in the Neotropics and on islands with spectacular palm radiations (e.g., Madagascar, Hawaii, and Cuba). Phylogenetic overdispersion on mainlands and islands corresponds to biotic interchange areas. Differences in the degree of phylogenetic clustering among biogeographic realms are related to differential losses of tropical rainforests during the Cenozoic, but not to the cumulative area of tropical rainforest over geological time. A largely random phylogenetic assemblage structure in Africa coincides with severe losses of rainforest area, especially after the Miocene. More recent events also appear to be influential: phylogenetic clustering increases with increasing intensity of Quaternary glacial-interglacial climatic oscillations in South America and, to a lesser extent, Africa, indicating that specific clades perform better in climatically unstable regions. Our results suggest that continental isolation (in combination with limited long-distance dispersal) and changing climate and habitat loss throughout the Cenozoic have had strong impacts on the phylogenetic structure of regional species assemblages in the tropics.
- Aarhus University Denmark
- Laboratoire Parole et Langage France
- Institut de Recherche pour le Développement France
580, 570, Tropical Climate, Australasia, Geography, extinction, Fossils, Cuba, Biodiversity, Arecaceae, South America, Hawaii, climate change, evolution, Africa, Madagascar, biogeography, Phylogeny, biodiversity
580, 570, Tropical Climate, Australasia, Geography, extinction, Fossils, Cuba, Biodiversity, Arecaceae, South America, Hawaii, climate change, evolution, Africa, Madagascar, biogeography, Phylogeny, biodiversity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).212 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
