
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reconciling reported and unreported HFC emissions with atmospheric observations

pmid: 25918401
pmc: PMC4434701
Significance Hydrofluorocarbons (HFCs) are among the atmosphere’s fastest growing, and most potent, greenhouse gases. Proposals have been made to phase down their use over the coming decades. Such initiatives may largely be informed by existing emissions inventories, which, we show, are the subject of significant uncertainty. In this work, we use atmospheric models and measurements to examine the accuracy of these inventories for five major HFCs. We show that, when aggregated together, reported emissions of these HFCs from developed countries are consistent with the atmospheric measurements, and almost half of global emissions now originate from nonreporting countries. However, the agreement between our results and the inventory breaks down for individual HFC emissions, suggesting inaccuracies in the reporting methods for individual compounds.
- University of California System United States
- Massachusetts Institute of Technology United States
- University of Bristol United Kingdom
- Kyungpook National University Korea (Republic of)
- Met Office United Kingdom
radiative forcing, 333, Climate Action, climate change, halocarbons
radiative forcing, 333, Climate Action, climate change, halocarbons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
