
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Substantial increase in perfluorocarbons CF 4 (PFC-14) and C 2 F 6 (PFC-116) emissions in China

pmid: 39008662
pmc: PMC11287116
The perfluorocarbons tetrafluoromethane (CF 4 , PFC-14) and hexafluoroethane (C 2 F 6 , PFC-116) are potent greenhouse gases with near-permanent atmospheric lifetimes relative to human timescales and global warming potentials thousands of times that of CO 2 . Using long-term atmospheric observations from a Chinese network and an inverse modeling approach (top–down method), we determined that CF 4 emissions in China increased from 4.7 (4.2-5.0, 68% uncertainty interval) Gg y −1 in 2012 to 8.3 (7.7-8.9) Gg y −1 in 2021, and C 2 F 6 emissions in China increased from 0.74 (0.66-0.80) Gg y −1 in 2011 to 1.32 (1.24-1.40) Gg y −1 in 2021, both increasing by approximately 78%. Combined emissions of CF 4 and C 2 F 6 in China reached 78 Mt CO 2 -eq in 2021. The absolute increase in emissions of each substance in China between 2011-2012 and 2017-2020 was similar to (for CF 4 ), or greater than (for C 2 F 6 ), the respective absolute increase in global emissions over the same period. Substantial CF 4 and C 2 F 6 emissions were identified in the less-populated western regions of China, probably due to emissions from the expanding aluminum industry in these resource-intensive regions. It is likely that the aluminum industry dominates CF 4 emissions in China, while the aluminum and semiconductor industries both contribute to C 2 F 6 emissions. Based on atmospheric observations, this study validates the emission magnitudes reported in national bottom–up inventories and provides insights into detailed spatial distributions and emission sources beyond what is reported in national bottom–up inventories.
- Fudan University China (People's Republic of)
- Scripps Institution of Oceanography United States
- Peking University China (People's Republic of)
- Fudan University China (People's Republic of)
- University of California System United States
climate change, 330, greenhouse gas, Physical Sciences, emissions, inverse modeling, perfluorocarbons
climate change, 330, greenhouse gas, Physical Sciences, emissions, inverse modeling, perfluorocarbons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
