Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors

Authors: orcid Mark D. White;
Mark D. White
ORCID
Harvested from ORCID Public Data File

Mark D. White in OpenAIRE
Samuel East; orcid Jos J. A. G. Kamps;
Jos J. A. G. Kamps
ORCID
Harvested from ORCID Public Data File

Jos J. A. G. Kamps in OpenAIRE
orcid Emily Flashman;
Emily Flashman
ORCID
Harvested from ORCID Public Data File

Emily Flashman in OpenAIRE
orcid Leah J. Taylor Kearney;
Leah J. Taylor Kearney
ORCID
Harvested from ORCID Public Data File

Leah J. Taylor Kearney in OpenAIRE

The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors

Abstract

Group VII ethylene response factors (ERF-VIIs) regulate transcriptional adaptation to flooding-induced hypoxia in plants. ERF-VII stability is controlled in an O2-dependent manner by the Cys/Arg branch of the N-end rule pathway whereby oxidation of a conserved N-terminal cysteine residue initiates target degradation. This oxidation is catalyzed by plant cysteine oxidases (PCOs), which use O2 as cosubstrate to generate Cys-sulfinic acid. The PCOs directly link O2 availability to ERF-VII stability and anaerobic adaptation, leading to the suggestion that they act as plant O2 sensors. However, their ability to respond to fluctuations in O2 concentration has not been established. Here, we investigated the steady-state kinetics of Arabidopsis thaliana PCOs 1-5 to ascertain whether their activities are sensitive to O2 levels. We found that the most catalytically competent isoform is AtPCO4, both in terms of responding to O2 and oxidizing AtRAP2.2/2,12 (two of the most prominent ERF-VIIs responsible for promoting the hypoxic response), which suggests that AtPCO4 plays a central role in ERF-VII regulation. Furthermore, we found that AtPCO activity is susceptible to decreases in pH and that the hypoxia-inducible AtPCOs 1/2 and the noninducible AtPCOs 4/5 have discrete AtERF-VII substrate preferences. Pertinently, the AtPCOs had Km(O2)app values in a physiologically relevant range, which should enable them to sensitively react to changes in O2 availability. This work validates an O2-sensing role for the PCOs and suggests that differences in expression pattern, ERF-VII selectivity, and catalytic capability may enable the different isoforms to have distinct biological functions. Individual PCOs could therefore be targeted to manipulate ERF-VII levels and improve stress tolerance in plants.

Country
United Kingdom
Related Organizations
Keywords

post-translational modification (PTM), ERF-VII, hypoxia, Arabidopsis Proteins, oxygen-sensing, Arabidopsis, Cysteine Dioxygenase, Ethylenes, N-end rule, Substrate Specificity, Oxygen, Kinetics, enzyme kinetics, plant biochemistry, Plant Cysteine Oxidase, protein degradation, Protein Isoforms, Oxidation-Reduction

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
Green
gold