Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2015
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2016
Data sources: IRIS Cnr
Combustion Science and Technology
Article . 2016 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
CNR ExploRA
Conference object . 2015
Data sources: CNR ExploRA
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pyrolysis, Combustion, and Fragmentation Model of Coal Particles: Preliminary Results

Authors: Senneca Osvalda; Urciuolo Massimo; Bareschino Piero; Diglio Giuseppe; Pepe Francesco; Chirone Riccardo;

Pyrolysis, Combustion, and Fragmentation Model of Coal Particles: Preliminary Results

Abstract

A mathematical model has been developed to predict fragmentation of particles under a wide range of pyrolysis and combustion conditions. The model is an upgrade of a previous one that took into account only fragmentation during the heat up and devolatilization stage. The model calculates the temperature and oxygen profiles within the particle, the evolution of internal porosity as a consequence of both devolatilization and carbon combustion, the mechanical stress caused by temperature gradients, and by volatiles-generated overpressure inside the particles. Eventually the model calculates the probability of rupture of the particle based on the Weibull (1939) theory. The model has been used to simulate heating of coal particles under inert conditions at different heating rates and temperatures showing good agreement with previous work. The model has been further used to simulate heating under oxidative conditions in order to highlight the role of combustion on fragmentation phenomena.

Country
Italy
Keywords

Fragmentation; Heat treatment; Coal; Combustion, Coal, Fragmentation, Combustion, Heat treatment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average