
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cooperative actuator fault accommodation in formation flight of unmanned vehicles using relative measurements

Cooperative actuator fault accommodation in formation flight of unmanned vehicles using relative measurements
In this article, the cooperative fault accommodation in formation flight of unmanned vehicles is investigated through a hierarchical framework. Three levels are envisaged, namely a low-level fault recovery (LLFR), a formation-level fault recovery (FLFR) and a high-level (HL). In the LLFR module, a recovery controller is designed by using an estimate of the actuator fault. A performance monitoring module is introduced at the HL hierarchy to identify a partially low-level (LL) recovered vehicle due to inaccuracy in the fault estimate which results in violating the error specification of the formation mission. The HL supervisor then activates the FLFR module to compensate for the performance degradations of the partially LL recovered vehicle at the expense of the other healthy vehicles. Both centralised and decentralised control approaches are developed for our proposed cooperative fault recovery technique. A robust H ∞ controller is designed in which the parameters of the controller are adjusted to accommod...
- Concordia University Canada
- University of Chicago United States
5 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
