Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Chemical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemical Engineering of Japan
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anion Exchange Membrane Water Electrolyzers: An Overview

Authors: Yuuki Sugawara; Sasidharan Sankar; Shoji Miyanishi; Rajith Illathvalappil; Pranav K. Gangadharan; Hidenori Kuroki; Gopinathan M. Anilkumar; +1 Authors

Anion Exchange Membrane Water Electrolyzers: An Overview

Abstract

The green-H2 production through water electrolysis from renewable energies is vital in the context of developing a sustainable and cost-effective methodology. Anion exchange membrane water electrolyzer (AEMWE) is considered as a promising energy conversion device, which can be an alternative to fossil fuel-based energyplatforms. AEMWE can employ inexpensive nonprecious metal catalysts and current collectors, which is preferable forpractical applications of this technology. Membrane electrode assemblies (MEAs) for AEMWE plays a significant role forthe hydrogen production efficiency. Thus, understanding the MEA components, operation, and performance is critical forthe development of prominent materials for the AEMWE. In this review, we highlight the performances of the MEAs andtheir components, such as the AEMs and catalysts with a broad discussion of the progress with current status. Additionally,we also have put forward our assessment to lead the way for future research, to commercialize AEMWE as a provenalternative for the cost-effective production of high-purity hydrogen.

Country
Japan
Keywords

Energy, Water electrolysis, Energy conversion, Anion exchange membranes, Chemical engineering, TP155-156, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research