Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Machinery - Reposito...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heat Transfer Engineering
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction and Control of Steam Accumulation

Authors: Stevanović, Vladimir; Petrović, Milan M.; Milivojević, Sanja; Maslovarić, Blaženka;

Prediction and Control of Steam Accumulation

Abstract

Steam accumulators are applied as buffers between steam generators and consumers in cases of different steam production and consumption rates. The application of the steam accumulator saves energy, reduces pressure fluctuations, and prevents aging of tubes and pressurized vessels in steam generators. In this paper, modes of the steam accumulator operation are analyzed and the general design of the steam accumulator control system is defined. Equilibrium and nonequilibrium thermodynamic models of the steam accumulator are presented with the aim of predicting the steam accumulator capacity and as support to the design of the control system. The equilibrium model is based on the mass and energy balance equations of the total water and steam content in the accumulator, while the nonequilibrium model is based on the mass and energy balance equations for each phase and closure laws of nonequilibrium evaporation and condensation rates. The steam accumulator pressure transients are simulated for constant steam ch...

Country
Serbia
Powered by OpenAIRE graph
Found an issue? Give us feedback