
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Algal growth and community structure in a mixed-culture system using coal seam gas water as the water source

pmid: 23837320
Coal seam gas (CSG) is being touted as a transition fuel as the world moves towards low-carbon economies. However, the development of CSG reserves will generate enormous volumes of saline water. In this work, we investigate the potential of using this saline water to support mass algae production. Water and brine from a CSG water treatment facility (1.6 and 11.6 g total dissolved solids per litre (TDS L(-1)) respectively) were inoculated with algal biomass from freshwater and seawater environments and supplemented with nutrients in open, fed-batch reactors. Significant algal growth was recorded, with maximum specific growth rates in CSG water and CSG brine of 0.20 +/- 0.05 d(-1) and 0.26 +/- 0.04 d(-1) respectively. These maximum specific growth rates were equal to or greater than specific growth rates in deionized water and seawater diluted to the same salinity. However, algal growth lag time in CSG brine was between 7 and 9 times longer than in other waters. Microscopy and terminal-restriction fragment length polymorphism (T-RFLP) were used to monitor community structure in the reactors. The same few algal species dominated all of the reactors, except for the CSG brine reactor at day 15. This result indicates that conditions in CSG brine select for different species of algae compared to seawater of the same salinity and other waters tested. The findings suggest that mass algae production in CSG water is feasible but algae community composition may be a function of CSG water chemistry. This has implications for the downstream use of algae.
- University of Queensland Australia
Salinity, Algae, Microbial Consortia, Sodium Chloride, Models, Biological, 2312 Water Science and Technology, Bioreactors, Coal seam gas water, T-RFLP, Computer Simulation, Cell Proliferation, 660, Eukaryota, Coculture Techniques, 2311 Waste Management and Disposal, Coal, Batch Cell Culture Techniques, 2304 Environmental Chemistry, Algal analysis, Gases, Water Microbiology
Salinity, Algae, Microbial Consortia, Sodium Chloride, Models, Biological, 2312 Water Science and Technology, Bioreactors, Coal seam gas water, T-RFLP, Computer Simulation, Cell Proliferation, 660, Eukaryota, Coculture Techniques, 2311 Waste Management and Disposal, Coal, Batch Cell Culture Techniques, 2304 Environmental Chemistry, Algal analysis, Gases, Water Microbiology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
